邵远夫教授

1、基本情况

邵远夫,男,博士,教授,硕士研究生导师,中共党员。主要从事微分动力系统、生物系统的动力学性质研究,致力研究时滞、脉冲、随机等复杂因素对系统动力学性质的影响和系统控制、优化与决策等问题。目前主持国家自然科学基金、广西自然科学基金项目各1项,主持教改项目1项,主持完成国家自然科学基金、省部级等项目4项,参与完成国家自然科学基金、教育部特色专业基金、科技厅自然科学基金等项目10项。在Nonlinear Anal.、Neurocomputing、Appl. Math. Comput.等国际著名学术期刊发表研究论文72篇,其中SCI收录50余篇,是Nonl. Anal.RWA、Fi、Jamc、Appl. Math. Comput、Appl. Math. Model、Chaos Solit. Frac.等20余SCI期刊的审稿人,美国数学评论特约评论员。

联系方式
通信地址:广西桂林市建干路12号,桂林理工大学理学院(邮编:541004)
联系电话:0773-5896179
Email address:shaoyuanfu@163.com

2、个人主要经历

  • 2018.3~至今 Wilfrid Laurier University Canada访学

  • 2011.1~至今 桂林理工大学任教

  • 2007.9~2010.6 中南大学学习

  • 2005.7~2010.12贵州师范大学任教

  • 2002.9~2005.6 云南大学学习

  • 1993.9~1996.6 邵阳学院学习

  • 1996.7~2002.8 湖南省洞口县任教

3、主要研究项目

  • 随机与脉冲随机生态系统的定性研究与仿真分析,国家自然科学基金(11861027),38万元,主持(1/10),2019. 1- 2022. 12.

  • 具脉冲和随机因素影响生物系统的稳定性分析,广西自然科学基金(2016GXNSFAA380194),5万元,主持(1/7),2016.9.1-2019.8.31.

  • 群体博弈的有限理性均衡研究及应用,国家自然科学基金(11661030),32万元,参与(2/9),2017.1-2020.12.

  • 多因素影响微分系统定性研究与仿真分析,国家自然科学基金(11161015),48万元,主持(1/9),2012.1-2015.12.

  • 种群博弈Nash平衡的精炼与演化动力学研究,国家自然科学基金(11161011),51万元,参与,2012.1-2015.12.

  • 近红外光谱分析的算法研究及其数学模型的优化广西高校科研项目(201203YB085)2万元,参与(2/5)2012.1-2015.5.

  • 脉冲微分方程的周期解及相关问题研究,国家自然科学基金(10971229),22万元,参与(5/10),2010.1-2012.12.

  • 具脉冲影响的种群生态系统的动力学研究,广西自然科学基金(2013GXNSFAA019003),5万元,主持(1/7),2013.04-2016.03.

  • 非参数估计方法的概率极限理论及其在经济的应用研究,广西自然科学基金重点项目(2013GXNSFDA019001),30万元,参与(2/10),2013.04-2016.03.

  • 统计数据分析与信息处理技术,广西高校人才小高地资助创新团队桂教人〔2011〕47 号,30万元,参与,2012.1-2014.12.

  • 混合云环境下信任关键技术研究,广西自然科学基金(2013GXNSFAA019349),5万元,参与(2/10), 2013.04-2016.03.

  • 无限局中人博弈NASH平衡的稳定性研究,贵州自然科学基金(黔合科J字[2010]2147),4万元,参与(3/7),2010.6-2012.12.

  • 脉冲微分系统的动力学性质研究,博士启动基金(01080),主持,2011.1-2013.12.

  • 常微分方程课程团队建设,教育部高等学校特色专业建设点基金资助项目(TS2375),参与,2007.6~2012.6.

  • 脉冲BAM神经网络系统周期解存在与稳定性研究,贵州省教育厅青年老师基金项目(20090038),2万元,主持,2010.1~2012.12.

  • 教改项目:《数学分析》微课设计、开发与应用,2014B05,1万元,参与(2/6).

  • 教改项目:数学类基础课程教学模式改革与实践,2017A34,1万元,主持(1/6).

4、学科建设与主要荣誉

  • 广西高校首届数学教学指导委员会,委员,2015

  • 广西高校数学理事会 常务理事, 2017

  • 广西高校应用统计重点实验室,桂教科研(2014)6号,方向负责人,Applied Statistics Key Laboratory (Guijiaokeyan (2014) no. 6)

  • 广西统计学重点学科建设,桂教科研(2014)13号,方向负责人,Statistics Guangxi Key Discipline (Guijiaokeyan (2013) no. 13)

  • 桂林理工的学应用数学重点学科建设,桂理工科(2014)5号,主持

  • 数值分析网络课程第十一届全国多媒体课件大赛获优秀奖,参与,2013

  • 基于大学生创新能力培养的数额学实验系列课程改革与实践,桂林理工大学教学成果特等奖,参与,2014

  • 广西首届研究生数学建模 优秀指导教师,2011

  • 广西第二届研究生数学建模优秀指导教师,2012

  • 就业工作先进个人,2017

5、发表论文情况

  1. Zhou S, Shao Y, Liu Q, et al. An Impulsive Food Chain System with Square Root Functional Response and Both Prey Refuge and Mutual Interference[J]. Mathematica Applicata, 2018.出版中.

  2. Zhou S, Shao Y, Liu Q, et al. The dynamical behaviors of an impulsive food-chain system with Hassell-Varley functional response and mutual interference between predators[J]. International Journal of Dynamical Systems and Differential Equations.2018.(EI)

  3. Zhou S, Shao Y, Liu Q, et al. A delayed impulsive food chain system with prey refuge and mutual inference of predator[J]. Advances in Difference Equations, 2018, 2018(1):137.(SCI)

  4. Qin Liu, Yuanfu Shao, Si Zhou, Zhen Wang and Hairu Chen, Dynamical analysis of almost periodic solution for a multi-species predator-prey model with mutual interference and time delays, Advances in Difference Equations 2017, 2017: 393 doi: 10.1186/s13662-017-1447-0.SCI

  5. Qin Liu, Yuanfu Shao, Si Zhou and Zhen Wang, Dynamics of a delayed predator-prey model with birth pulse and impulsive harvesting on the prey,应用数学, 2018, 31(1): 153-167.

  6. Qin Liu, Yuanfu Shao, Si Zhou and Hairu Chen, Dynamical behaviors of a three Species

  7. predator-prey system with predator stage-structure and impulsive effects.工程数学,出版中.

  8. 邵远夫,马相敏Analysis of a predator–prey system with Beddington type functional response and stage-structure of prey, Int. J. Dynamical Systems and Differential Equations.51-65, 2017-06-10. (EI)

  9. 王圳、邵远夫、方先家、马相敏The dynamic behaviors of one-predator two-prey system with mutual interference and impulsive control, Mathematics and Computers in Simulation, 2017, 132: 68–85. (SCI)

  10. 王圳、邵远夫、方先家、马相敏An Impulsive Three-Species Model with Square Root Functional Response and Mutual Interference of Predator, Discrete Dynamics in Nature and Society, Volume 2016, Article ID 3897234, 14 pages, 2016/4/27. (SCI)

  11. 王圳,邵远夫,方先家Integrated pest management of one-predator two-prey system with mutual interference,工程数学学报,672-692,2017-12-01.

  12. 方先家,邵远夫,孔维丽,马相敏,王圳,琚志祥The dynamics of a delayed gompertz model with holling IV function response and impulsive effects at different moment on the prey, Journal of Applied Mathematics and Computing, 2016, 51:35-52.(EI)

  13. 方先家,邵远夫,王圳关于具有脉冲与HOLLING功能反应的捕食食饵模型研究,应用数学, 2016, 29(2): 258-268.(核心)

  14. 方先家,邵远夫,王圳,高唱一类脉冲扩散捕食食饵模型研究,数学的实践与认识 , 2016, 46(10): 182-192.(核心)

  15. Xiangmin Ma, Yuanfu Shao∗, Zhen Wang, Mengzhuo Luo, Xianjia Fang, Zhixiang Ju, An impulsive two-stage predator–prey model with stage-structure and square root functional responses, Mathematics and Computers in Simulation 119 (2016) 91–107.(SCI)

  16. Xiangmin Ma,Yuanfu Shao, Zhen Wang, Xianjia Fang and Zhenguo Luo, Analysis of an Impulsive One-Predator and Two-Prey Systemwith Stage-Structure and Generalized Functional Response,Discrete Dynamics in Nature and Society, Volume 2015, Article ID 864367, 10 pages,http://dx.doi.org/10.1155/2015/864367.(SCI)

  17. Qianhong Zhang, Zhenguo Luo, Jingzhong Liu, Yuanfu Shao, Dynamical behaviour of second-order rational fuzzy difference equation, Int. J. Dynamical Systems and Differential Equations, Vol. 5, No. 4, 2015,336-353.

  18. Changjin Xu,Yuanfu Shao,Peiluan Li,Bifurcation Behavior for an Electronic NeuralNetwork,Model with Two Different Delays,Neural Process Lett,DOI 0.1007/s11063-014-9372-7.(SCI)

  19. Qianhong Zhang, Yuanfu Shao, Jingzhoing Liu, Existence and stability of periodic solutions for impulsive FCNNs with mixed delays on time scales, Analele stiintifice ale university, mathematica,pages 24. DOI: 10.2478/aicu-2014-0005.

  20. Qianhong Zhang, Wenzhuan Zhang, Yuanfu Shao, Jingzhong Liu, On a Fuzzy Logistic Difference Equation, WSEAS TRANSACTIONS on MATHEMATICS, Volume 13, 2014, 282-290.

  21. Zhixiang Ju, Yuanfu Shao,* Xiaolan Xie , Xiangmin Ma, Xianjia Fang, The dynamics of an impulsive predator-prey system with stage-structure and Holling Ⅲfunction respons, Abstract and Applied Analysis Volume 2014, Article ID 183526, in press.(SCI)

  22. Yuanfu Shao, Xiaolan Xie, and Zhixiang Ju, Global Attractivity of Positive Periodica Delayed Predator-Prey System withDiffusion and Impulses,Journal of Applied Mathematics, Volume 2014, Article ID 459451, 9 pages.(SCI)

  23. Ying Li, Yuanfu Shao*, DYNAMIC ANALYSIS OF AN IMPULSIVE DIFFERENTIAL EQUATION WITH TIME-VARYING DELAYS, APPLICATIONS OF MATHEMATICS 59 (2014) 85–98.(SCI)

  24. Zhixiang Ju,Yuanfu Shao*,Weili Kong,Xiangmin MaandXianjia Fang,An impulsive prey-predator system with stage-structure and Holling II functional response,Advances in Difference Equations2014,2014:280 doi:10.1186/1687-1847-2014-280.(SCI)

  25. Li chenglin, Wang xuhuang, Shao Yuanfu, steady states of a predator-prey model with prey taxis, Nonlinear Anal. RWA. 2014,97:155-168.(SCI)

  26. Zhixiang Ju and Yuanfu Shao*, Existence and Stability of Periodic Solution for an Immune System with Delays and Impulses, Applied Mathematical Sciences, Vol. 8, 2014, no. 12, 579– 588.

  27. Qianhong Zhang, Wenzhuan Zhang, Yuanfu Shao, Jingzhong Liu,On the System of High Order Rational Difference Equations.International Scholarly Research Notices,Volume 2014, Article ID 760502, 5 pages.

  28. Yuanfu Shao, Ying Li, Dynamical analysis of a stage structured predator–prey system with impulsive diffusion and generic functional response,Applied Mathematics and computation220 (2013) 472–481.(SCI)

  29. Qianhong Zhang,Yuanfu Shaoand Jingzhong Liu,Analysis of stability for impulsive fuzzyCohen–Grossberg BAM neural networks with delays,Math. Method Appl. Science,36 (2013)773-779.(SCI)

  30. Yuanfu Shao and Qianhong Zhang, Stability and periodicity for impulsive neural networks with delays,Advances in Difference Equations2013, 2013:352.(SCI)

  31. Qianhong Zhang, Jingzhong Liu, Yuanfu Shao, Analysis of stability for impulsive stochastic fuzzy Cohen-Grossberg neural networks with mixed delays,WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS.

  32. 张千宏,邵远夫,刘璟忠,随机时滞模糊细胞神经网络均方指数稳定性分析,江西师范大学学报(自然科学版) 2013,37(2)195-198.

  33. Zhang qianhong, Yang Lihui, Shao Yuanfu, Delayed dependent stability analysis of fuzzy Cohen_Grossberg neural networks with impulse, Publications Mathematicae-debrecen, 83 (2013) 569-582.(SCI)

  34. Shao Yuanfu,Xu Changjin, and Zhang Qianhong,Globally Exponential Stability of Periodic Solutions to Impulsive Neural Networks with Time-Varying Delays,Abstract and Applied AnalysisVolume 2012, Article ID 358362, doi:10.1155/2012/358362.SCI

  35. Shao Yuanfu, Dynamic analysis of an impulsive predator-prey model with diseasein prey and Ivlev-type functional response,Abstract and Applied AnalysisVolume 2012, Article ID 750530.(SCI)

  36. Shao Yuanfu, Globally asymptotical stability and periodicity for a nonautonomous two-species system with diffusion and impulses ,Applied Mathematical Modelling, 2012,36: 288-300.SCI

  37. Yuanfu Shao,Existence of exponential periodic attractor of BAM neural networks with time-varying delays and impulses,Neurocomputing,2012,93:1–9.(SCI

  38. 邵远夫,一类脉冲多时滞互惠系统周期解的存在性与稳定性,四川师范大学学报(自然科学版),2012,35:33-38. (核刊)

  39. Shao Yuanfu,Tang Guoqiang,Existence of periodic solution and persistence for a delayed predator-prey system with diffusion and impulse,J. Appl. Math.&Informatics. 2012,30: 429 - 444.

  40. ShaoYuanfu,Guoqiang Tang and Wu Ai, Exponential periodic attractor and exponential convergence of a class of functional differential equation with time-varying delays,Elixir Appl. Math.2012, 42: 6157-6163.

  41. Shao Yuanfu, Tang Guoqiang, Ai Wu, Exponential stability of periodic solutions for neural networks with impulse and delays,International Conference on Mathematics and sustainable Development within SCET2012, 36-38.EI

  42. Shao Yuanfu, Tang Guoqiang, Periodic solutions and global attractivity of an impulsive Host-macroparasite model with delays,Chinese Quarl. Jour. Math. 2012, 27:301-307.

  43. Changjin Xu, Peiluan Li andYuanfu Shao,Existence and global attractivity of positive periodic solutions for a Holling II two-prey one-predator system,Advances in Difference Equations,2012, 2012:84.(SCI)

  44. Changjin Xu,Yuanfu Shao, Existence and global attractivity of periodic solution for enterprise clusters based on ecology theory with impulse,J Appl Math Comput, 2012, 39:367–384.(EI)

  45. 邵远夫,幂级数求和方法初探,时代报告,2012, 6:043.(教改)

  46. 邵远夫,数学分析课程定义教学探究,四川师范大学学报(自然科学版教育专辑),2012, 35:362-364.(教改)

  47. Changjin Xu,Yuanfu Shao, and Peiluan Li, Uniformly Strong Persistence for a Delayed Predator-Prey Model,Journal of Applied Mathematics, Volume 2012, Article ID 358918, 7 pages(SCI).

  48. Shao yuanfu, Zhou yonghui. Existence of exponential periodic attractor of a class of impulsive differential equation with time-varying delays.Nonlinear Analysis TMA. 2011,74:1107-1118.(SCI)

  49. Shao Yuanfu,Exponential stability of periodic neural networks with impulsive effects and time-varying delays.Appl. Math.Comput. 2011,217:6893-6899.(SCI)

  50. Shao Yuanfu, Ying Li, Changjin Xu. Periodic solutions for a class of nonautonomous differential system with impulses and time-varying delays. Acta Appl. Math.2011,115: 105-121.(SCI)

  51. Shao Yuanfu, Dai Binxiang. Existence and globally asymptotical stability of periodic solutions for two‐species non‐autonomous diffusion competition n‐patch system with time delay and impulses.J. Appl. Math. Comput. 2011,36:141-161.(EI)

  52. Shao Yuanfu, Periodic solutions and Global attractivity of functional differential equations with impulse and delays,宁夏大学学报(自然科学版)2011,32:214-225.

  53. Shao Yuanfu. Multiple positive periodic solutions of a delayed ratio‐dependent predator‐prey model with functional response and impulse.应用数学,2011,24:30-39.

  54. Shao Yuanfu. Global exponential stability of BAM neural networks with impulses and distributed delays.J. Appl. Math.&Informatics,2011,29:103-117.

  55. Tang Guoqiang,Shao Yuanfu(通讯作者), Existence of positive periodic solutions for impulsive functional differential equation on time scales,Advance. Appl. Math. Science, 2011,10: 571-582.

  56. Changjin Xu,Yuanfu Shao, Bifurcations in a predator-prey model with discrete and distributed time delay,Nonlinear Dyn, DOI 10.1007/s11071-011-0140-1.(SCI)

  57. 邵远夫,数学物理方程教学方法探究,贵州师范大学学报(社会科学版增刊),2011,6:257-258。(教改)

  58. Shao Yuanfu, Dai Binxiang. The dynamics of an impulsive delay predator‐prey model with stage structure and Beddington‐type functional response.Nonlinear Anal. RWA.2010,11: 3567-3576.(SCI)

  59. Shao Yuanfu,Dai binxiang, Luo zhenguo. The dynamics of an impulsive delay one prey multi-predator model with Holling-II functional response.Appl. Math.Comput.2010,217:2414-2424.(SCI)

  60. Shao Yuanfu. Analysis of a delayed predator‐prey system with impulsive diffusion between two patches.Math. Comp. Model., 2010, 52: 120-127.(SCI)

  61. Shao Yuanfu, Dai Binxiang. The existence of exponential periodic attractor of impulsive BAM neural network with time-varying coefficients and distributed delays.Neurocomputing2010,73:3123-3131.(SCI)

  62. Shao Yuanfu. Existence of positive periodic solutions for a neural delay impulsive system on time scale.数学进展,2010, 39: 224-232.

  63. Shao Yuanfu, Dai Binxiang. Existence of positive periodic solutions for a neural delay impulsive system.应用数学,2010, 23: 331-339.

  64. Shao Yuanfu, Dai Binxiang. The dynamics of a delayed predator‐prey system with Holling‐type II functional response and impulsive diffusion.the 7th Conference on Biological Dynamic System and Stability of Differential Equation,Chongqing, 2010, 235-239.(ISTP)

  65. Shao Yuanfu,Existence of three positive periodic solutions for a class of functional differential equation with delays.贵州师范大学学报(自然科学版),2010, 28: 63-65.

  66. 邵远夫,熊向辉,肖金戈,常微分方程教学的积淀思考,贵州师范大学学报(教育科学版),2010,6:149-151.(教改)

  67. Shao Yuanfu. Existence of positive periodic solutions for a neural delay Lotka‐Volterra system with impulsive effects.应用数学,2009, 22: 168-176.

  68. Shao Yuanfu, Existence of positive periodic solution of a generalized n‐species competition model with impulse.贵州师范大学学报(自然科学版),2009,27:46-51.

  69. 邵远夫,肖金戈,高等代数方法在中学数学中的应用,铜仁学院学报,2008,2:81-84。

  70. 李培峦,周雪刚,邵远夫,张小勇,一类二阶三点非齐次边值问题正解的存在性,数学理论应用,2008,2:24-27.

  71. 邵远夫,李陪峦,一类脉冲延滞微分方程正周期解存在的充分条件,四川师范大学学报(自然科学版),2008,31:549-553.

  72. 邵远夫,一类含有时滞与扩散的捕食--追捕系统的持续生存,贵州师范大学学报(自然科学版),2008,26:65-67.

  73. 邵远夫,李成林,Hilbert空间中函数和的次微分规则及应用,云南大学学报(自然科学版)2004, 26:475-478.

其中教改论文

  1. 邵远夫,肖金戈,高等代数方法在中学数学中的应用,铜仁学院学报,2008,2:81-84。

  2. 邵远夫,幂级数求和方法初探,时代报告,2012, 6:043.

  3. 邵远夫,数学分析课程定义教学探究,四川师范大学学报(自然科学版教育专辑),2012, 35:362-364.

  4. 邵远夫,熊向辉,肖金戈,常微分方程教学的积淀思考,贵州师范大学学报(教育科学版),2010,6:149-151.

  5. 邵远夫,数学物理方程教学方法探究,贵州师范大学学报(社会科学版增刊),2011 6:257-258.

6、指导研究生情况

2014年以来硕士研究生发表论文及毕业论文情况:

姓名

论文题目

以第一作者发表

论文数目及收录情况

备注

琚志祥

具有脉冲与时滞的生物系统的动力学行为分析与研究

SCI 1, EI 1,核心1

校级优秀

马相敏

具阶段结构生态系统脉冲控制策略研究与仿真分析

SCI 2

校级优秀

方先家

具非单调功能反应的脉冲捕食-食饵系统动力学性质研究

EI 1,核心2

校级优秀

王圳

有干扰影响的脉冲捕食-食饵系统的稳定性研究与数值分析

SCI 2,核心1

校级优秀

刘钦

几类脉冲捕食-食饵系统的动力学性质研究与仿真分析

SCI 1,核心2

校级优秀

周斯

几类有相互干扰与功能反应的脉冲食物链系统的稳定性研究与分析

SCI 1, EI 1,核心1

版权所有:9778818威尼斯(澳门)股份有限公司-搜狗百科  2023